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We perform a detailed experimental study of large-scale vortices propagating in the
rotating shallow-water layer in a paraboloidal vessel. A specific data acquisition
technique is used in order to ensure precise measurements of the free-surface elevation.
We find two qualitatively different types of vortex behaviour controlled by the relative
elevation value. For small elevations we observe a standard quasi-geostrophic pattern
with an asymmetric secondary circulation around an initially symmetric vortex which
leads to a meridional drift and Rossby wave radiation. This type of behaviour is
exhibited by both cyclonic and anticyclonic vortices. For relative elevations larger than
1 (nonlinear regime) the necessarily anticyclonic vortices are drifting strictly zonally
maintaining their circular symmetry during the viscous decay. By varying the initial
latitude of the vortex we were able to check that in the nonlinear regime the vortex
lifetime is not sensitive to the beta-effect, while it is the case in the quasi-geostrophic
regime. In the same way we show that the observed difference in cyclone–anticyclone
lifetimes is not influenced by the beta-effect.

1. Introduction

Rotating shallow water (RSW) is one of the prototype models in geophysical fluid
dynamics (GFD). It contains the most typical atmospheric}oceanic dynamical
ingredients such as rapid weakly dispersive gravity waves, strongly dispersive Rossby
waves (in the case of non-uniform Coriolis parameter), slow vortex motions, and
interactions among them. However, the very richness of this model makes a direct
analysis of the basic equations of motion (primitive equations) very difficult by the
obvious reason that it is necessary to cope with motions of very different temporal and
spatial scales simultaneously. A traditional approach for this kind of problem which
is typical, e.g. for observational data assimilation and meteorological forecast, consists
in filtering out the fast motions and describing the long-time evolution in terms of the
balanced slow motion. A number of the so-called intermediate or balanced models
arise in this way in GFD (McWilliams & Gent 1980) and, in particular, in RSW, being
normally based on the geostrophic balance (Warn et al. 1995 and references therein).
In the case of motions with well-defined characteristic scales as, for instance, a single
vortex the most direct method to deduce an intermediate model is a straightforward
asymptotic expansion in relevant small parameters. An essential advantage of such
models is that they provide a closed evolution equation for a single scalar quantity,
normally the pressure (i.e. the free surface elevation in the case of RSW). On one hand,
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this quantity could be controlled observationally (e.g. by the satellite altimetry in the
oceanic context) and, on the other hand, its evolution equation is easier to integrate
numerically than the original primitive equations. As to the validity of the intermediate
models, the best way to check their predictions would be to confront them with
observations and with direct numerical simulations of the primitive equations. As the
first are sparse and not always easy to interpret and the second are still not very
reliable, especially for long-time calculations, one may also envisage some laboratory
tests. Among them, a study of dynamics of the large-scale monopolar vortices is the
most simple way to test the intermediate models results. The purpose of the present
paper is an experimental investigation of this kind and our main goal is to demonstrate,
in the same experiment, a continuous transition between the patterns of dynamical
behaviour which can be, respectively, described by two different intermediate models.

As far as the experiment is concerned, two approaches to study the evolution of
barotropic monopolar vortices have been known up to now. In the first, a slow rotating
tank with a sloping bottom has been used to mimic a non-uniform Coriolis parameter
(Firing & Beardsley 1976† ; Masuda, Marubayashi & Ishibashi 1990; Carnevale,
Kloosterziel & van Heijst 1991). For slow rotation (5 to 20 r.p.m.) the motion of an
isolated geostrophically balanced vortex (i.e. that with a small Rossby number) cannot
sustain a strong radial pressure gradient because the Coriolis force is weak. Therefore,
for such a vortex the free surface deviation from hydrostatic equilibrium is small. In
general such experiments are well described by the standard quasi-geostrophic (QG)
model resulting in the well-known streamfunction evolution equation (Pedlosky 1987).
Much of the numerical (McWilliams & Flierl 1979; Mied & Lindemann 1979; Sutyrin
et al. 1994) and theoretical (Sutyrin & Flierl 1994; Reznik & Dewar, 1994) effort has
been focused on the study of the evolution of an isolated monopolar barotropic QG
vortex on the beta-plane. The main result was that such a vortex produces an
asymmetric circulation (the so-called beta-gyres) which, in turn, results in a pronounced
meridional component of the drift velocity and Rossby wave radiation.

In the second approach, in the pioneering experiments by Nezlin and co-workers
(Antipov et al. 1982; Nezlin & Snezhkin 1993) a fast rotating (about 70 r.p.m.)
parabolic vessel was used in order to get a curved shallow-water layer (to our
knowledge, the idea of using a parabolic device was first discussed by Petviashvili
1980). As the free surface of a rotating fluid assumes a parabolic shape, the angular
velocity of rotation may be adjusted in order to get an approximately uniform layer.
Hence, as the normal component of the angular velocity depends on latitude, one
naturally gets a gradient in the Coriolis parameter. In such an experiment a vortical
perturbation of the RSW results in strong deviations of the free surface due to the fast
rotation if the layer is thin enough. Dynamical properties of those vortices will be then
significantly different from those given by the standard QG model and, in fact, long-
lived westward drifting isolated vortices manifesting a cyclone–anticyclone asymmetry
were observed by the above-mentioned authors.

In Nature, large-scale monopolar vortices maintaining their coherence for very long
times are quite frequent (Lai & Richardson 1977; Ebbesmeyer et al. 1986; Brundage
& Dugan 1986; Smith et al. 1979, 1982, 1989; Mac Low & Ingersoll 1986). They are,
thus, natural candidates for application of the ideas of balanced motion, although at
the present stage one cannot exclude alternative hypotheses of forced-dissipative
structures (Read & Hide 1983; Busse 1994) or inertial structures interacting with a
background shear (Meyers, Sommeria & Swinney 1989) where Rossby wave emission

† These authors used a rapidly rotating tank with rigid lid and bottom; as there was no free surface
the standard QG model with infinite radius of deformation was still valid.
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F 1. Barotropic shallow-water layer in the paraboloidal geometry.

is suppressed by uniformization of the potential vorticity due to the turbulent mixing
(Marcus 1990; see Sommeria et al. 1991). One may ask, therefore, whether RSW which
is representative of the basic dynamical features, could support long-living solitary
vortex structures. Owing to the above-mentioned effects of the beta-gyres and Rossby-
wave radiation it is impossible to explain the long-time coherence of the monopolar
vortices in the framework of the standard QG model. However, as already mentioned,
this latter is not the only balanced model consistent with the RSW equation: an entire
hierarchy of intermediate models exists (Romanova & Zeitlin 1984; Williams &
Yamagata 1984; Williams 1985; Sutyrin 1985; Cushman-Roisin 1986) depending on
the characteristic parameters of the vortex. These models are, perhaps, less well known
than the standard QG model, but the important fact first noticed by Petviashvili (1980)
and Mikhailova & Shapiro (1980) and then studied in detail in Williams & Yamagata
(1984), Romanova & Zeitlin (1984, 1985), Sutyrin & Yushina (1988) and Stegner &
Zeitlin (1995, 1996) is that a range of parameters exists where a nonlinear anticyclonic
vortex of a special form can live for a long time, drifting strictly westward in the
planetary geometry. The physical reason for the existence of such a solution, at least
in the axisymmetric case, is a mutual compensation of weak nonlinearity (a so-called
scalar nonlinearity) and weak dispersion like in the case of the KdV equation (see,
however, a recent paper by Kukharkin & Orszag (1996) where the existence of non-
symmetric localized vortices in the presence of an unstable shear was established
numerically in the same kind of model). That is why it was called a Rossby soliton by
some authors, although the collisions among such solitons are not elastic. Up to now,
no direct numerical check of this prediction has been made in the framework of the
primitive equations. At the same time, as already mentioned, long-lived coherent
vortices were observed and identified with Rossby solitons in the fast rotating
parabolic vessel experiments (Antipov et al. 1981; Nezlin & Snezhkin 1993; Nezlin
et al. 1996). But, as was first mentioned in Nycander (1993), a fundamental difference
exists between the spherical planetary geometry and the experimental paraboloidal
geometry. For this latter, the effective gravity g*, which includes gravitational and
centrifugal acceleration, has a latitude dependence, as shown in figure 1. This fact leads
to important differences concerning the scalar nonlinearity in the evolution equation
in question (Nycander 1993). Without formally proving or disproving the existence of
the Rossby solitons on the paraboloid a formula based on centre-of-mass arguments
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and relating the drift velocity of such a soliton was given by Nycander (1993). Later,
by means of an asymptotic analysis it was shown (Stegner & Zeitlin 1995, 1996) that
the changes due to geometry in the evolution equations have a drastic influence on their
solutions and the Rossby soliton as defined above does not exist in the intermediate
models with paraboloidal geometry. On the contrary, the lifetime of any strongly
nonlinear axisymmetric vortex is very long. Such strongly nonlinear regimes
correspond to the planetary frontal dynamics regime which was discussed in the
atmospheric and oceanic context by Williams & Yamagata (1984) and Cushman-
Roisin (1986).

The aim of the present paper is to verify experimentally the predictions of the
intermediate models for the behaviour of large-scale slowly evolving (balanced)
monopolar vortices in RSW using the same paraboloidal device as in Nezlin &
Snezhkin (1993). We pay particular attention to the accurate control of the parameters
of the vortices and, in the first place, to the free surface elevation. For this, we have
chosen a data acquisition technique, different from Nezlin’s experiments, which allows
us to directly control and measure the elevation of the free surface (a sort of ‘satellite
altimetry’ has been used). By performing numerous experiments we were able to study
vortices for a wide range of parameters in a quantitative way and to establish that two
different regimes of vortex behaviour exist. They are controlled by the relative elevation
value and are consistent with the intermediate model results

2. Physical parameters in the paraboloidal geometry

In this section, we recall the standard shallow-water beta-plane approximations and
the geostrophic balance assumption, from which we extract the physical parameters
used in both theoretical and experimental investigations of the paraboloidal shallow-
water layer.

The shallow-water approximation is based on the smallness of the thickness
parameter δ¯H

!
}L

!
' 1, and the smallness of the vertical velocity V

z
}V

!
¯ δ, where

L
!
, V

!
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, V

z
are, respectively, the characteristic horizontal and vertical scales and

velocities. To the lowest order in δ one finds that the pressure deviation p¯P®P
H

from the hydrostatic equilibrium P
H

¯ ρ
!
g*H

!
(1®z) is independent of the depth.

Then, from the Euler equations and the boundary conditions one obtains the standard
equations for a rotating shallow-water layer with a free surface (Pedlosky 1987) :
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1
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¡p, (1)

p¯ ρ
!
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t
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where D
t
¯ ¥

t
­V[¡, ∆h is the deviation of the free surface, H is the total height of the

layer H¯H
!
­∆h, V is the horizontal velocity and k is the normal unit vector aligned

with the effective gravity g* which, in the paraboloidal experiment, includes
gravitational and centrifugal accelerations (see figure 1).

The beta-plane approximation consists of taking a linear term in the expansion of
the normal component Ω

z
of the angular velocity at some constant colatitude θ :

f¯ 2Ω
z
¯ f

!
(1­βy), (4)

where y is the dimensionless meridional coordinate directed towards the centre of the
vessel, f

!
is the local Coriolis parameter

f
!
¯ 2Ω

!
cos θ (5)
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and β characterizes the variation of Ω
z

with latitude (‘beta-effect ’). Note that f
!

decreases when the paraboloidal colatitude θ increases (see figure 1) ; the ‘north’ is
therefore located at the centre of the vessel. A northward (southward) direction is a
direction towards (away from) the centre. As mentioned in the Introduction, in the
paraboloidal geometry the effective gravity g* also has a latitude dependence, unlike
the planetary case. Therefore

g*¯
g

cos θ
(1®βy). (6)

The specific beta-parameter for the paraboloidal geometry is given by
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where R
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¯ g}(Ω#

!
cos$ θ) is the local curvature of the paraboloidal free surface. β

should be small (L
!
'R

c
) in order to justify the beta-plane approximation. Note that

β vanishes at the centre of the paraboloid θ¯ 0 while it is maximum at θE 35°.
According to the geostrophic balance assumption the pressure gradient is

compensated by the Coriolis force at the first order of approximation. The geostrophic
balance is then satisfied if we can neglect in (1) the inertial terms in comparison with
the Coriolis terms. In order to estimate the ratio of these two terms the dimensionless
Rossby number is introduced:
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where T
!

is the period of rotation of the vessel and T
int

the characteristic internal
rotation in the core of the vortex.

We also define a dimensionless relative elevation parameter which characterizes the
amplitude of the vortex:

λ¯∆h}H
!
, (9)

where ∆h is the deviation of the free surface from the hydrostatic equilibrium at the
centre of the vortex. For vortices in geostrophic balance (ε' 1) we get, according to
(1) and (2), a simple scaling relation between λ and the Burgers number Bu :
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where we introduce the local Rossby radius:
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We deliberately chose to characterize the vortex by λ rather than Bu−" because,
according to our depth measurement technique (see below) we directly measure λ and
the dispersion of results is, thus, reduced.

The set of equations (1), (2) and (3) admits dispersive Rossby wave solutions. On the
infinite beta-plane tangent to the paraboloid (cf. Nycander 1993; Stegner & Zeitlin
1995) at the lowest order in ε, β one gets a well-known relation for these waves :
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is the maximum westward phase speed of linear Rossby waves. Relation (13) does not
take into account the possible topographic effects (gradients in the thickness of the
unperturbed layer H

!
) which may play an important role in paraboloidal geometry.

Nevertheless, it is possible, by using an accurately adjusted rotation Ω
!

to eliminate
such topographic effects at a given latitude. We deliberately restrict our study to this
case.

No dissipation was introduced in (1)–(3). However, as far as the experiment is
concerned, the effects of the viscous boundary (Ekman) layer at the bottom of the
vessel play an important role. At the lowest order the Ekman layer affects the
dispersion relation of the Rossby waves as follows (Pedlosky 1987) :
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where T
E

is the standard Ekman spin-down time:
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According to (14), the decay rate of a localized linear Rossby wave packet is scale-
dependent. Hence, in the framework of the linear analysis, we get from (14) a
characteristic spin-down time

T
spin-down

¯ 2 0 L
!

R
Rossby

1# 91­0RRossby

L
!

1#:TE
(16)

for an isolated vortex of characteristic scale L
!
.

Note that like the Rossby radius, the Rossby velocity V
Rossby

and the Ekman time
T
E

depend only on the parameters of the unperturbed layer and are not sensitive to the
size and velocities of the vortex perturbation. We therefore use these parameters to
rescale data obtained in different unperturbed layers.

3. Experimental procedure

In the paraboloidal geometry the beta-effect is due to the latitude dependence of the
local normal component of rotation Ω

z
, exactly like in a spherical planetary shallow-

water layer. However, in order to neglect the effect of the horizontal component Ω
y

a
condition δ¯H

!
}L

!
' 1 should be strictly satisfied. In order to fulfil this condition we

used a thin layer in all of our experiments and, therefore, the thickness parameter δ was
in the range 0.05–0.25. This condition is more stringent than for the experiments with
a flat layer of slowly rotating fluid where the vertical angular velocity Ω

z
is constant

throughout the layer. In this latter case the ‘horizontal Coriolis effect ’ is absent and the
shallow-water approximation ensuring two-dimensionality of the flow is still valid if
δE 1 as long as the Rossby number remains small.

3.1. The experimental setup

Figure 2 shows a schematic side view of the experimental apparatus. The fluid layer
lines a parabolic Plexiglas vessel of shape z¯ pr# with p¯ 2.67 m−" and 45 cm in
diameter.

A system of twelve halogen lamps is mounted around the vessel and a conical
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F 2. Sketch of the experimental apparatus.

reflector is used to obtain practically homogeneous lighting of the fluid layer from
below through the transparent Plexiglas vessel. The image of the fluid layer is taken by
a sensitive black-and-white CCD camera (Hitachi KP-M1) mounted on the rotating
frame. We use a wide-angle lens and fix the camera close to the vessel in order to reduce
the geometrical distortion of the image due to the parabolic shape of the fluid layer.
The video signal passes through an electric slipring (Air Precision T13SD) to be
recorded by a high-resolution VCR (Panasonic AG-7355 S-VHS). Since the video
signal is the only AC signal passing through the sliprings, there are no ‘diaphonic’
mixing or perturbations whatsoever.

The rotating cell containing the paraboloidal vessel, the lighting system, the video
camera and a small injection-suction system (see below), is driven by a DC servomotor
(CEM T5F2C). Note that this motor is not fixed on the axis of rotation of the
apparatus (unlike classical turntables). The whole rotating cell is mounted inside a
large ring which is supported by three wheels. A gearing connects the motor to the ring.
The rotation of the whole system is controlled by an optical encoder yielding 26500
counts for one revolution of the vessel. The main rotation rate (70.98 r.p.m. for a fluid
layer of 12 mm) was observed to be stable with an accuracy of 0.1%.

3.2. Measurement techniques

The main idea of this technique is to measure the height of the fluid layer from the light
absorption in the uniformly dyed water. The dye used in experiments (Amaranth) has
a maximum absorption rate at 520 nm wavelength. Therefore, to improve the
sensitivity of the system we put a specific pass-band filter on the video camera, in order
to select visible light in a narrow band between 480 and 560 nm. The video camera
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(b)

(mm)
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F 3. (a) Camera image and (b) the topographic map of the free surface resulting from the video
processing of a large-scale anticyclone generated by injection; the dark circle in (b) indicates the
actual location of the sidewall boundary; the characteristic vortex size, as defined below, corresponds,
roughly, to 11 mm level.

output is digitized in a frame of 768¬512 pixels with a resolution of 256 grey levels by
means of a frame grabber and image processing software (NIH 1.55 for Macintosh).
In the final black-and-white digitized camera image the pixel intensities depend linearly
on the light intensity after absorption in the fluid layer. Hence, for a local elevation of
the free surface the light absorption will be higher and this region will appear dark on
the video image (see figure 3a). The inverse exponential relation between the pixel
intensity and the layer thickness according to the Beer–Lambert law of absorption was
carefully checked. In order to have an accurate calibration, which would take into
account the deviation of the light intensity from perfect uniformity, several reference
images (15 to 25) of different thickness were recorded. These reference images
correspond to unperturbed fluid layers at hydrostatic equilibrium having constant
thickness.
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Starting from a black-and-white camera image (figure 3a) we construct a topographic
map of the free surface using either shading (figures 3b, 16) or false colours (figures 8
and 9), each change in shading}colour corresponding to a depth variation of 1 mm.
Besides, a small region (5¬5 pixels) on this image could be selected and a specific grey-
level averaging process applied to get a more precise measurement of the local mean
thickness. To check the calibration and estimate the accuracy of the height
measurements we recorded images of the unperturbed fluid layer with several
rectangular pieces of glass of a known thickness put at the bottom of the tank. We
therefore created local changes in the thickness of the fluid layer. These relative depth
variations were detected by the thickness measurement procedure with an accuracy of
5%. In addition, in order to estimate the caustic effects, we fixed a thin curved glass
at the bottom of the tank which trapped an air lens and, thus, mimicked a smooth
circular dip of the free surface. The focusing or defocusing of light beams due to the
curvature of the air–fluid interface may introduce a systematic amplification or
attenuation of the light intensity independent of the dye absorption. The systematic
error due to this caustic effect was observed to be less than 8%, for the strongest
curvature. We therefore estimate that the errors of the height measurement technique
we used do not exceed 10%. We should emphasize that no height measurement can be
made close to the boundary of the vessel, as the light cone (see figure 2) does not cover
the whole surface of the fluid layer. Consequently, our topographic map pictures do
not represent the fluid layer as a whole. The dark circle in figure 3(b) shows the location
of the real sidewall boundary.

Together with these altimetric measurements, we use, when necessary, streak particle
velocimetry and colour-dye visualization.

3.3. Generation of �ortices

As mentioned in §2, the fast rotation of the vessel produces a flow in geostrophic
balance. The velocity field follows the isobars. Hence, if a region of high pressure
(elevation) is created locally an anticyclonic circulation will appear and, inversely, for
a low-pressure region (dip) a cyclonic circulation results. Among several methods we
have tested, the injection or suction techniques appears to be the best for the generation
of isolated and almost circular vortices. To obtain an anticyclone we inject a small
amount of fluid from above the unperturbed layer, as shown in figure 4(a). To get
large-scale cyclones a thin disk of 4 cm diameter (see figure 4b) is fixed at the end of
the pipe (diameter 8 mm) to increase the suction section. We introduce this device in
the unperturbed layer and we remove the pipe from the layer immediately suction is
over. The volume of the injected or sucked liquid varied from 50 ml to 300 ml with a
mean flow rate of 35 ml s−". Note that the mechanical pumping used in our
experiments did not allow a significant change of the flow rate.

During the generation process, when the local thickness of the layer varies rapidly,
a strong chaotic and three-dimensional motion occurs. However, after a rapid period
of geostrophic adjustment a vortex obtained from this perturbation becomes quasi-
axisymmetric and respects the geostrophic balance. All the values of the dimensionless
parameters λ, ε, β given in this paper are measured in this initial state, just after the
adjustment process, a few seconds after the injection or suction has been stopped.

The measured Rossby numbers for vortices produced in this way are small (although
not infinitesimally small), which confirms the basic geostrophic balance hypothesis. In
figures 5(a) and 5(b) we give some typical examples of the radial azimuthal velocity
profiles for an anticyclone and a cyclone which we get from particle-streak velocimetry.
The Rossby numbers are ε¯ 0.23 and 0.13, respectively. It is clear that the structures
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(a) (b)

F 4. Generation of quasi-axisymmetric vortices in geostrophic balance: (a) injection to
produce an anticyclone; (b) suction with a pipe with attached disk to get a large-scale cyclone.
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obtained are indeed isolated in the sense that their velocity decays faster than 1}r. In
other words, the circulation vanishes outside the vortex. We pay special attention to
this point because of the fact that non-isolated structures were being produced by the
suction method in some previous studies (Carnevale et al. 1991).

We have also observed that when we increased the amount of injected liquid in the
unperturbed layer of thickness H

!
¯ 11.5 mm the relative elevation and size of the
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vortex increased whereas its Rossby number remained small (see figure 6a). The
relation between the size and the relative elevation of the resulting vortices is presented
in figure 6(b). We see that the relation between λ and Bu−" at an almost constant
Rossby number is linear, in agreement with equation (10) where the characteristic scale
L

!
is defined as half of the relative elevation radius h(r¯L

!
)¯H

!
­"

#
∆h

max
. Similar

results were also obtained for anticyclones with H
!
¯ 6 mm. These observations

confirm that the vortex motion respects the geostrophic balance and, thus, the basic
idea of the intermediate models.

4. Results

In all our experiments the Rossby number and the dimensionless beta-parameter
were observed to be of the same order : βE 0.1 and εE 0.1–0.3. By changing the
thickness of the unperturbed layer (4 to 24 mm) we were able to vary the Rossby radius
from 1.4 to 3.5 cm and by changing the volume perturbation we get vortices with
characteristic radius L

!
from 4.5 to 7.5 cm. In this way we got quantitative results for

vortices with the relative elevation parameter λ in the range from 0.25 to 3.5 and the
characteristic horizontal scale L

!
from L

!
¯ 0.8R

Rossby
to L

!
¯ 4.2R

Rossby
.

4.1. Quasi-geostrophic �ersus nonlinear dynamics

Figure 7 shows the evolution of a passive tracer for two different anticyclonic vortices.
In this experiment, the unperturbed water layer contains no dye, while the volume
injected has a strong dye concentration. The volume injected, the flow rate and the
location of the pipe are identical for the two cases. The only difference is the thickness
of the unperturbed layer, 24 mm for figure 7(a) and 6 mm for figure 7(b). We therefore
have a small relative elevation in the first case and a strong one in the second case. For
the small relative elevation (estimated to be 0.25) the fluid in the outer shear region
surrounding the strong central anticyclone is peeled off the structure and cast aside. A
cyclonic dye pattern emerged from this shear region. Besides, we notice that while the
central anticyclone drifts westwards, there is also a non-negligible meridional
southward drift. These dynamical properties are close to the behaviour of relatively
small-scale (L

!
!R

Rossby
) vortices propagating on the topographic beta-plane

(Carnevale et al. 1991). Note that the evolution of the dye concentration in an isolated
cyclone shown by these authors (figure 4 in their paper) has a striking similarity with
our results. On the other hand, for a strong relative elevation (estimated to be 1.3) the
coherence and the longevity of the anticyclone are much more pronounced. The dye
pattern stays circular and drifts westwards at a constant latitude with almost no
southward deviation. These results indicate that two qualitatively different dynamical
regimes are possible in the framework of the paraboloidal experiment.

To confirm this observation we used the height measurement procedure described
above and allowing a fully quantitative analysis. Figure 8 shows the time evolution of
the free surface represented by the topographic maps in false colours for an anticyclone
generated at the same conditions as the vortex shown in figure 7(a). As expected, the
initial relative elevation λ at the centre of the anticyclone is small, λ¯ 0.25, and is of
the same order as the Rossby number. The initially axisymmetric anticyclone quickly
loses its symmetry while a cyclonic tail appears and increases in amplitude. The centre
of the anticyclone (the point of maximum amplitude) drifts southwestwards. This kind
of behaviour is typical of an isolated barotropic vortex in the standard QG regime
where λE εEβ. Indeed, laboratory (Firing & Beardsley 1976; Masuda et al. 1990;
Carnevale et al. 1991), numerical (McWilliams & Flierl 1979; Mied & Lindemann



12 A. Stegner and V. Zeitlin

(a) (b)

t = 5 T0 t = 5 T0

t = 9 T0 t = 11 T0

t = 12 T0 t = 23 T0

t = 16 T0 t = 35 T0

F 7. Dynamical evolution of an anticyclonic vortex for (a) small (λE 0.25) and (b) high (λE
1.3) relative elevation. The volume injected into the unperturbed pure water layer contains a strong
concentration of dye. The injected volume (135 ml), the flow rate and the location of the pipe are
strictly identical for the two cases. The thickness of the unperturbed layer is (a) H

!
¯ 24 mm and (b)

H
!
¯ 6 mm; the period of rotation of the vessel is (a) T

!
¯ 0.821 s; (b) T

!
¯ 0.856 s.
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1979; Sutyrin et al. 1994) and theoretical investigations (Sutyrin & Flierl 1994; Reznik
& Dewar 1994) have clearly established the tendency for a QG anticyclone (cyclone)
to propagate to the southwest (northwest). Besides, owing to the Rossby wave
dispersion the initial vortex leaves a Rossby wave wake behind it and develops a
wavenumber 1 axial asymmetry. This fact was carefully checked in numerical
simulations of McWilliams & Flierl (1979) and Mied & Lindemann (1979), and the
experiment of Firing & Beardsley (1976). Therefore, the appearance of an increasing
circulation of opposite sign behind the initial vortex can be seen as a signature of a
Rossby wave wake.

The evolution of a nonlinear anticyclone generated at the same conditions as in
figure 7(b) is shown in figure 9. We observe here a strong elevation (λ¯ 1.3) and large-
scale (L

!
¯ 3.7R

Rossby
) vortex. As in figure 7(b) the anticyclone remains circular and

propagates westwards with no meridional drift. Besides, we note that unlike the case
of the QG anticyclone described above there is no evidence of any cyclonic circulation
behind the main vortex. In order to determine the range of the parameter λ where these
large-scale and long-lived vortices can be obtained we generated numerous anticyclones
and studied systematically their lifetimes and drift velocities.

Let us add that, although we cannot prove this rigorously, we do not think that the
sidewalls effects play a significant role in selecting the pattern of vortex behaviour.
Indeed, the geometry of the initial configuration and the absolute vortex radius do not
change much from, say, figure 8 to figure 9 (let us recall that it is the ratio of the vortex
radius to the Rossby radius which determines the dynamical regime and not the radius
itself). Quantitatively, the geometric parameter (vortex radius)}(distance from the wall
to the vortex centre) is approximately the same (0.3 and 0.4, respectively). Hence, a
priori, the influence of the boundaries is roughly the same in the two cases while the
vortex behaviour is completely different. The main difference comes from the
characteristics of the unperturbed shallow-water layer : H

!
¯ 24 mm, R

Rossby
¯ 3.5 cm

for figure 8 and H
!
¯ 6 mm, R

Rossby
¯ 1.8 cm for figure 9. Hence, it is the relative

elevation parameter λ which governs the transition between the two dynamical
regimes.

4.2. The influence of the Ekman spin-down mechanism and Rossby wa�e dispersion on
the lifetime of anticyclones

One may observe in figure 9 that while an anticyclone drifts at a constant latitude it
spreads symmetrically and its amplitude slowly decreases. We plot its relative elevation
as a function of time on figure 10. This evolution is properly fitted by an exponential
decay and we, therefore, define a characteristic lifetime T

life
for each vortex as its e-fold

decay time.
As already mentioned in §2, the Ekman layer plays an important role in the

experiment. Indeed, the Ekman spin-down is rapid even for small Ekman numbers E
k
.

For the present experiment the value of E
k
¯ ν}(2Ω

!
H#

!
cos θ) is about 10−$ and the

characteristic thickness of the Ekman boundary layer d
E

¯ (ν}Ω
z
)E 0.3 mm, with

ν¯ 10−' m# s−" for the kinematic viscosity of water. The main problem arising when
studying vortex lifetimes is to separate the contribution of the Ekman spin-down from
that of the Rossby wave dispersion}emission process. Therefore, we decided to
measure the lifetimes of anticyclones drifting at θF 30° where the beta-effect is
maximal and compare them with the lifetimes of anticyclones generated at the centre
of the vessel, where there is basically no beta-effect (the f-plane situation). In this latter
case the lifetimes are expected to be entirely determined by the Ekman spin-down. We
use the Ekman spin-down time (Pedlosky 1987) based on the quasi-geostrophic
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22 23 24 25 26 27 28 29 30

(mm)

t = 4T0 ; ì = 0.25

t = 7T0 ; ì = 0.19

t = 11T0 ; ì = 0.14

t = 5T0 ; ì = 0.21

t = 9T0 ; ì = 0.17

t = 13T0 ; ì = 0.09

F 8. Topographic maps of the free surface for a quasi-geostrophic anticyclone. The injected
volume (140 ml), the flow rate, the thickness of the unperturbed layer (H

!
¯ 24 mm) and T

!
¯ 0.821 s

are the same as in figure 7 (a). The characteristic horizontal scale L
!
¯ 4.5 cm is of the same order as

the Rossby radius R
Rossby

¯ 3.5 cm.
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t = 8T0 ; ì = 1.25

t = 14T0 ; ì = 0.95

t = 20T0 ; ì = 0.67

t = 11T0 ; ì = 1.1

t = 17T0 ; ì = 0.8

t = 23T0 ; ì = 0.47

6 7 8 9 10 11 12 13 14 15

(mm)

F 9. Topographic maps of the free surface for a strongly nonlinear anticyclone. The injected
volume (140 ml), the flow rate, the thickness of the unperturbed layer (H

!
¯ 6 mm) and T

!
¯ 0.856 s

are the same as in figure 7(b). The characteristic horizontal scale L
!
¯ 6.5 cm is larger than the

Rossby radius R
Rossby

¯ 1.8 cm.
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F 10. Relative elevation λ of the large-scale anticyclone of figure 9 as a function of time. Solid
line represents an exponential decay fit. The characteristic lifetime is T

life
¯ 15.7 sE 18T

!
, while the

internal period of rotation is T
int

E 2 s at the initial state.
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F 11. Lifetimes of anticyclones rescaled by the standard Ekman spin-down time (15), as a
function of the relative elevation parameter λ. Open symbols correspond to the vortices generated at
the centre (no beta-effect), filled symbols represent vortices generated at θ¯ 30° (maximum beta-
effect).

estimates to rescale the data obtained with different thicknesses H
!
of the unperturbed

layer. The results of this analysis are presented in figure 11.
The open symbols in figure 11 represent the anticyclones generated at the centre and,

thus, give an idea how the Ekman spin-down affects the lifetime of vortices. We first
note that the lifetimes increase linearly with the relative elevation of the vortices. If we
take into account the observed relation between λ and Bu described in figure 6(b) and
discussed previously in §3.3, we see that the linear dependence of the lifetime on λ is
in agreement with the relation (16). Besides, when the vortices tend to the quasi-
geostrophic regime, λE ε' 1, L

!
ER

Rossby
, we note that T

life
C 4T

E
which is also in

surprisingly good agreement with (16). However, the slope of the linear dependence of
T
life

on λ is overestimated by (16) which is, probably, a signature of the nonlinear
effects in the Ekman mechanism for strong relative elevations.



Monopolar �ortices in a paraboloidal shallow water layer 17

30

20

10

0 100 200 300

Anticyclone (33°)
Anticyclone (22°)
Anticyclone (7°)

Volume (ml)

Tlife

(s)

F 12. Lifetimes of anticyclones as a function of injected volume. Relative elevations are within
the range 0.4–0.9. Vortices are generated at three different colatitudes : 7°, 22° and 33° in the same
unperturbed fluid layer H

!
¯ 11.5 mm.
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F 13. Subsequent longitudinal angular positions of the vortex centre (extremum of elevation)
as a function of time for the strongly nonlinear anticyclone of figure 9. Solid line represents a linear
fit with a constant angular westward drift velocity of 5.8° s−".

The influence of the Rossby wave dispersion on the lifetime can be deduced from the
comparison of the open circles with the filled ones in figure 11. We can clearly see that
for small relative elevations (λ! 0.5) : T

life(centre)
E 2T

life($!
°)
. In this regime close to the

quasi-geostrophic scales the lifetimes of anticyclones drifting at θE 30° are reduced by
the Rossby wave dispersion. This result is confirmed by the analysis of the
corresponding topographic maps of the free surface which exhibit a very weak dip
(cyclonic circulation) behind the main elevation (anticyclonic vortex). We plot in figure
12 the measured lifetime as a function of the injected volume for several anticyclones
(0.3!λ! 0.8) generated at different colatitudes in the same unperturbed layer of
thickness H

!
¯ 11.5 mm. Here, again, the lifetime of the vortex of a given size decreases

when its beta-parameter increases. On the other hand, for strong relative elevations
(λ" 1) we find that T

life(centre)
ET

life($!
°)
, i.e. the lifetimes of vortices are determined
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F 14. Ratio (in the absolute values) of the meridional drift velocity V
y

and the westward drift
velocity V

x
. Filled circles correspond to anticyclones, open circles to cyclones.

entirely by the Ekman spin-down mechanism. Hence, for the nonlinear anticyclones
with λ" 1 the lifetimes seem not to be affected by the Rossby waves dispersion.

4.3. Analysis of drift �elocities

In order to measure the westward drift velocity, we plot the longitudinal angular
position of the vortex centre (extremum of elevation) as a function of time. We show
in figure 13 a plot corresponding to the large-scale anticyclone of figure 9. All the points
fit a straight line, from which we deduce the angular drift velocity of the vortex. Hence,
although the amplitude of the vortex decreases with time (see figure 9), the drift velocity
remains perfectly constant. However, as we have seen before, a vortex may have a
meridional drift in addition to the mean westward propagation. We thus plot in figure
14 the absolute value of the ratio of the meridional drift velocity V

y
and the westward

drift velocity V
x
. These quantitative measurements confirm the qualitative observations

of §4.1. The meridional propagation due to a weak asymmetric circulation is typical of
quasi-geostrophic vortices, while for vortices with strongly nonlinear dynamics (λ" 1)
the meridional drift component V

y
vanishes.

According to previous experimental results obtained with a paraboloidal vessel in
the case of forced monopolar vortices in a thin shallow-water layer (Rasmussen,
Stenum & Snezhkin 1996) and in the case of free isolated vortices in a thick layer
(Nezlin et al. 1996) the drift velocity of a vortex depends both on its amplitude and the
characteristics of the unperturbed layer. This latter is generally characterized by the
maximum westward phase speed of the linear Rossby waves for the infinite beta-plane
locally tangent to the shallow-water layer at a given latitude. In order to investigate the
dependence of the drift velocity on vortex amplitude and to compare our experimental
results with the predictions of the centre-of-mass argument of Nycander (1993) we plot
in figure 15 the drift velocity non-dimensionalized by the Rossby velocity (13) as well
as the value given by Nycander’s formula.† We first note that for a given depth the
dependence of the westward drift velocity on λ is weak, as predicted by Nycander’s
formula. But on the other hand, a disturbing feature of this graph is that the results for

† In order to calculate the dimensionless integrals in Nycander’s formula

V
x
¯®V

Rossby91­λ(R
Rossby

}L
!
)& (1­λh) h#

x
dxdy 0& hdxdy1−":

written here in the absence of topography (which is our case), we approximate the experimental
vortices by the Gaussian shape h(x, y)¯ exp ((x#­y#)}1.44).
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F 15. Ratio V
x
}V

Rossby
(in the absolute values) as a function of λ, where V

x
is the westward drift

velocity and V
Rossby

is the Rossby velocity (13). Open symbols correspond to various anticyclones
generated in layers of different thickness H

!
. Black dots and the solid line fit are the theoretical values

derived from the Nycander centre-of-mass velocity formula for the large-scale vortices.

different depths do not match. Indeed, for the same value of λE 1 we get three values
of the ratio V

x
}V

Rossby
: 0.75, 0.95 or 1.3 corresponding, respectively, to depths equal to

12, 6 or 4 mm. This is an indication that the Rossby velocity given by (13) does not
provide an accurate scaling for the drift velocity of free isolated vortices in the
paraboloidal experiment. A possible reason for that could be related to corrections due
to non-trivial topographic effects in paraboloidal geometry which are neglected in (13).
Indeed, we found that these effects may slightly change the ratio V

x
}V

Rossby
but,

nevertheless, the results for different depths still do not match. A possible explanation
of this discrepancy is that finite-size effects and finite horizontal curvature of the vessel
become important for vortices which are that large. To take them properly into
account a fully curvilinear (cf. Romanova & Zeitlin 1984) analysis of this problem is
necessary. This will be done elsewhere.

Let us add that, unfortunately, a systematic quantitative comparison of our results
with those obtained for isolated vortex drift velocities by Nezlin & Snezhkin (1993) was
not possible because the parameter which is most important for vortex identification,
elevation, was not measured by these authors.

4.4. Cyclone–anticyclone asymmetry

In order to obtain large-scale cyclones and compare their dynamical properties with
large-scale anticyclones, we used the generation technique described in figure 4(b). For
obvious reasons, we were unable to obtain cyclones with a relative elevation parameter
larger than λ¯ 1. In fact we could not move beyond λ¯ 0.75. Therefore, a direct
comparison with anticyclones of strong elevation is impossible. Figure 16(a) shows the
evolution of a large-scale axisymmetric cyclone. This cyclone stays circular and
propagates westwards with a small northward drift. According to the data plotted in
figure 14, the absolute values of the northward drift of cyclones are equal to the
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(a)

(b)

t = 9T0 ; ì = 0.71 t = 12T0 ; ì = 0.51

t = 15T0 ; ì = 0.4 t = 18T0 ; ì = 0.34

4 5 6 7 8 9 10 11 12 13

(mm)

F 16. Topographic maps of the free surface for (a) initially axisymmetric and (b) initially elliptic
cyclones. The unperturbed layer thickness is H

!
¯ 12.5 mm, the period of rotation of the vessel is

T
!
¯ 0.842 s. The characteristic horizontal scale L

!
¯ 4.5 cm is slightly larger than the Rossby radius

R
Rossby

¯ 2.8 cm, but not as large as for the large-scale anticyclone in figure 9.
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F 17. Lifetimes of cyclones and anticyclones as a function of sucked (cyclones) or injected
(anticyclones) volume in the unperturbed layer H

!
E 2 mm. The two largest cyclones (200 ml and

230 ml) generated at θE 29° were initially elliptic (cf. figure 16b). The other cyclones are axisymmetric.
Lifetimes are rescaled by the standard Ekman spin-down time (15). Filled symbols represent
anticyclones and open symbols cyclones. Circles correspond to the vortices generated at θE 29°,
while vortices generated close to the centre are denoted by triangles.

southward drift of anticyclones having the same relative elevation parameter. Hence,
the large-scale cyclones obtained in our experiment manifest the quasi-geostrophic
behaviour as well as the anticyclones of the same relative amplitude.

When we tried to get a larger cyclone by increasing the amount of sucked liquid, we
obtained, in the initial stage, an elliptic vortex, as shown in figure 16(b). Indeed, owing
to the beta-effect, a part of the vortex began to drift westwards while the fluid was still
being sucked at the location of the pipe. This process naturally creates a cyclone
elongated in the westward direction. However, this structure tends to become
symmetric after a few revolutions.

In parallel with the above-described study of anticyclones, we investigated the
lifetimes of cyclones drifting at θE 30° colatitude where the beta-effect is maximal and
compared them with the lifetimes of cyclones generated at the centre of the vessel where
there is no beta-effect. The results of this analysis are shown in figure 17. In addition,
we plot in this figure data obtained for the anticyclones generated in the same
unperturbed layer. For intermediate relative elevations (0±4!λ! 0.75) the lifetimes of
cyclones decrease when the beta-parameter increases T

life($!
°)
E 0.4T

life(centre)
. Here,

again, these cyclones, like anticyclones of the same relative amplitude, manifest a
quasi-geostrophic behaviour, the lifetimes of vortices drifting at θE 30° being reduced
by the Rossby wave emission}dispersion.

Like in the previous experiments with a paraboloidal vessel with a thin layer
(Antipov et al. 1981; Nezlin & Snezhkin 1993) we observed that for a given size the
lifetime of a cyclone is less than the lifetime of an anticyclone. However, unlike
the preceding authors, we investigate this cyclone–anticyclone asymmetry close to the
centre of the vessel, as well. We observed, see figure 17, that this asymmetry still exists
near the centre, where the beta-effect vanishes. Indeed, by going from θE 30° to
θE 7° we reduce the beta-parameter by a factor three while differences in lifetimes
between cyclones (open circles) and anticyclones (filled circles) are always about 30%–
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40%. Hence, the asymmetry in lifetimes between cyclones and anticyclones is not
related to the beta-effect.

The question of the cyclone–anticyclone asymmetry thus requires further investi-
gation. Three possible mechanisms may be responsible for this phenomenon, in our
view. First, as far as dissipation is concerned, the nonlinear effects may accelerate the
Ekman spin-down of cyclones, although this was shown for small-scale (L'R

Rossby
)

vortices only (Kloosterziel & van Hejst 1992). Second, in spite of the fact that we see
no clear instability manifestations in our experiments, we cannot completely exclude
this possibility. Indeed, it was shown numerically by Cushman-Roisin & Tang (1990)
that large-scale cyclones in the frontal dynamics regime are unstable on the f-plane.
Third, numerical simulations of Polvani et al. (1994) show that the cyclone–anticyclone
asymmetry is present in freely decaying inviscid shallow-water turbulence on the f-
plane and becomes more pronounced when the Froude number grows. This means that
geostrophically unbalanced motions could play a role in establishing the asymmetry in
question. A detailed analytical and experimental investigation of this problem for
large-scale (L(R

Rossby
) vortices is in progress now (Poux 1997).

5. Conclusions

Thus, by performing experiments with isolated large-scale vortices we have
demonstrated that two different dynamical regimes exist in the rotating paraboloidal
shallow-water layer. They are governed by the characteristic nonlinearity of the vortex
and are consistent with the standard quasi-geostrophic and strongly nonlinear (frontal
dynamics) regimes predicted by the intermediate balanced models. When the relative
elevation parameter changes we observe a continuous transition from one regime to
another, concerning the pattern of the vortex behaviour. Quantitatively, at relative
elevations less than 0.4 we clearly observe the standard quasi-geostrophic evolution, at
relative elevations greater than 1 we clearly see the strongly nonlinear evolution, and
in between the intermediate behaviour is observed. In the range of parameters where
both cyclones and anticyclones may exist we observe asymmetry in their lifetimes
consistent with the previous studies (Nezlin & Snezhkin 1993). However, we prove
experimentally that this asymmetry persists in the absence of the beta-effect and, thus,
is not related to the Rossby wave radiation. We also show that vortex lifetimes in the
strongly nonlinear regime are not sensitive to changes of β while this is the case for the
quasi-geostrophic regime. The measurements of the drift velocities of the vortices
exhibit deviations from the infinite beta-plane predictions and, for the moment, we are
not able to give a satisfactory explanation of this discrepancy. One possible reason is
the finite size and finite horizontal curvature effects both necessitating inclusion of
curvature effects and resulting in changes in boundary conditions with respect to the
infinite beta-plane analysis.

The two basic regimes observed in experiments differ substantially concerning vortex
longevity, its coherence and transport properties and its drift direction. However, the
characteristic scales of vortices in both regimes are not very different. For example, we
see a typical nonlinear behaviour starting from L

!
& 3R

Rossby
. Hence, to understand

the dynamics of a structure which is just two or three times larger than the
characteristic Rossby scale it may be necessary to use a non-standard intermediate
model.

We should emphasize, however, that in the framework of asymptotic intermediate
models when βE ε' 1, λE 1 a strongly nonlinear regime (Stegner & Zeitlin 1995,
1996) in a paraboloidal geometry allows long-lived monopolar vortices while this is not
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the case in the frontal dynamics regime (Williams & Yamagata 1984; Cushman-Roisin
(1986) in the planetary geometry. Therefore, comparisons of the large-scale strongly
nonlinear vortices obtained in the laboratory with atmospheric or oceanic ones should
be done with care. In any case, the present experimental device allowing simultaneous
study of the beta-plane and the f-plane phenomena may be used to model a number
of geophysical hydrodynamic situations and, in particular, to provide further tests of
the predictions of the balanced models.
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